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Abstract: Permutational isomers and isomerization processes are classified and characterized for several cases in which various 
constraints, such as bidentate ligation, are placed upon the positioning of ligands upon a molecular skeleton. The formulation 
is group theoretical in nature and identifies double cosets with the various isomers and rearrangement modes. Some illustrative 
examples of this general approach are presented. 

1. Introduction 

One of the classical problems in chemistry is the classifi
cation and characterization of the various permutational iso
mers which can arise from the distribution of ligands on a 
molecular skeleton in different manners.2 A second but related 
problem concerns the classification and characterization of the 
different "modes" of permutational isomerization. 

At the outset it is convenient to review briefly the mathe
matical formulation of these problems. First, let £ denote a 
set of N ligands and let £ represent a set of N sites associated 
with tjie positions on a molecular (or ionic) skeleton. The as
signment of each ligand to a unique site is termed a bijection 
(or bijective mapping) from L to §. Each such bijection is 
referred to as a permutamer or arrangement, and clearly 
identifies some permutational isomer. In general, because of 
various site and/or skeletal symmetries, more than one per
mutamer may identify the same isomer. In the work of Ruch 
et al.3 the many-to-one nature of this identification has been 
described precisely for the case in which there are no con
straints upon the skeletal positions which the various ligands 
can occupy. For a permutational isomerization process one 
permutamer is rearranged to another, and a partial charac
terization of such processes is obtained providing they are 
classified in terms of the sites between which the ligands are 
moved. Thus we consider bijections, here termed rearrange
ments, from the set S of skeletal sites back onto S. A classifi
cation of these rearrangements has been illustrated4 and de
scribed precisely,5'6 again for the case in which there are no 
constraints upon the ligand occupancy of the various skeletal 
positions. 

The primary purpose of the present article is to demonstrate 
that the previous mathematical descriptions of permutational 
isomers and isomerization processes can be used also to de
scribe situations with certain physically reasonable constraints 
which include the following: 

(a) Preferential ligand location. This restriction confines a 

certain subset of ligands to a subset of sites. This situation 
arises when, e.g., certain skeletal sites will accept only ligands 
of sufficiently small size or of sufficiently low electronegativ
ity. 

(b) Bridging ligands. This implies that a certain subset of 
sites be occupied by ligands of a particular subset of X. 

(c) Bidentate ligands. This restriction requires that specified 
pairs of ligands must lie on near-neighbor pairs of skeletal sites. 
[Furthermore, if two bidentate ligands are not to "cross 
through" one another, this implies the restriction that specified 
(ordered) quartets of ligands must not lie on certain (ordered) 
quartets of sites.] 

(d) Sterically bulky groups. This restriction requires that 
specified pairs of ligands do not lie on near-neighbor pairs of 
sites because of steric congestion. 

(e) Tridentate ligands. This requirement implies that 
specified (ordered) triples of ligands must lie on near-neighbor 
(ordered) triples of sites. 

(0 Quadridentate ligands. Here one has the restriction that 
specified (ordered) quartets of ligands must lie on near-
neighbor (ordered) quartets of sites. 

(g) Combinations of two or more of the preceding restric
tions. 

The constraints described in case a have, in fact, been con
sidered previously.7'8 However, this case is especially simple 
(and is described briefly at the end of section 5). 

In section 2 of this article the earlier general work3 de
scribing permutational isomers in the absence of constraints 
will be reviewed. The inclusion of constraints will be considered 
in section 3, and it will be demonstrated that the resulting 
classes of permutamers involve either only permutamers sat
isfying the constraints or only permutamers not satisfying the 
constraints. Furthermore, these classes, identifying the various 
permutational isomers, are grouped together to form, often 
larger, classes with this same "all-or-none" feature. In section 
4 the theory is applied to the particular case of permutational 
isomer classification which occurs when bidentate chelates are 
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present in the coordination sphere. Some explicit examples are 
given involving trigonal-bipyramidal, octahedral, and icosa-
hedral skeletons. In section 5 the permutational isomerization 
problem with constraints is mentioned briefly, and in section 
6 the bidentate chelate case is considered again. Finally, the 
relationship of our exhaustive and general (but sometimes 
tedious) approach to a previously described approach will be 
discussed. Previous work has been concerned with tris-chelate 
octahedral complexes9 and propellar molecules.10 We argue 
that this alternative approach is applicable under only rather 
special circumstances which are discussed and illustrated with 
examples. 

2. Permutational Isomers 
In the treatment of Ruch et al.,3 one considers the symmetric 

group SN of permutations on JV objects. By convention the 
superscripts L or S are appended to a permutation to indicate 
whether it acts on the elements of £ or of S. Thus if P e SN 
sends the integer i to Pi, then PL e SNL and Ps e SNS send 
£i e £ and s,- e S1 to PL£t = £Pi and PSS( = sPi. Now letting 
<P\ be a "reference" bijection from £ to S such that £t is 
mapped to <pi(£i) = Sj, i = 1 to N, any other bijection, say <pP, 
which maps £j to Sp1, may be expressed as 

<pP = PS1P1 = VlpL (2.1) 

In general, several permutamers, each uniquely associated with 
a permutation in SN, can identify the same permutational 
isomer, owing to the occurrence of experimentally indistin
guishable ligands or skeletal orientations. This redundancy is 
accounted for via symmetry groups £L s SNL and <£5 s S^s 

of permutations acting on £ and £. Typically, £ L permutes 
indistinguishable ligands about, and Ss is the permutation 
group whose elements relabel the sites in the same manner as 
effected by conventional point group operations on the mo
lecular skeleton. (It should be noted3-6 that the definitions of 
£ and <? depend upon the distinguishability achievable by the 
experiments under consideration.) Now two permutamers <pp 
and ifQ are associated with the same permutational isomer if2 

there exist L e £ and SeS1 such that 

SSVPLL = <PQ (2.2) 

or equivalently that 

SPL = Q (2.3) 

Hence corresponding to a single permutational isomer one has 
a set of permutations, identified as a single £,£ double coset, 
abbreviated hereinafter to DC. These £,£ DCs disjointly 
partition SN, so that they form an equivalence relation on SN. 
These DCs possess several additional group-theoretic prop
erties of fundamental use.5-8-11 

3. General Theory for Permutational Isomers 
First mappings of (ordered) n-tuples of ligands into the set 

of (ordered) n-tuples of sites are introduced 

<pp * (£it. £i2— . £i„) = (<pp£h, • • • . <pp£tK) 

= (sPix Sp1n), £iv £iv...,£,ne £ (3.1) 

Next certain subsets £W> of /!/-tuples of ligands (in £) are 
constrained to be mapped into the corresponding subsets SW> 
of /!,-tuples of sites (in S1). That is, we term a permutamer <pP 
to be allowed if 

<pP*£U)^$U) (3.2) 

for ally > 1; otherwise <pP is termed forbidden. The general 
constrained problem to be considered is that of classifying the 
different allowed permutational isomers (corresponding to 
some allowed permutamer). 

The examples a, c, e, and f of section 1 are readily discerned 
to be included in the present formulation. A very simple case 
arises if one has a single constraint for a single bidentate che
late: presuming £( and £j form this chelate, then X(1) = 
\(£t,£j), (£j,£i)\; furthermore, ^ (1) is the set of near-neighbor 
pairs of sites, and the constraint statement is such that <pP * 
X(1> s #(1>, i.e., that <pP map 1̂- and £j onto a near-neighbor 
pair of sites. Examples b_and d of section 1 are most directly 
stated in terms of a set £W> of /!,-tuples of ligands to be ex
cluded (under mappings as in (3.1)) from a set &W* of/(/-tuples 
of sites; however, such constraints are readily restated in terms 
of inclusion statements, as in (3.2^, if one merely considers £W> 
and î O') to be complements of £~W and £<J\ 

£0) = l(eh,ti2,...,£inj)$ £U)} 

#0-)^|(5,„5, .2 , . . . ,5,„,)^~0->) ( 3 .3) 

Finally, example g of section 1 is included in the present for
mulation, when j in (3.2) ranges over two or more values. 

Now mappings corresponding to each P e SN are intro
duced: 

PL*(£h 4Q = (P1I11 PL£in) 
= (*«, £PO, £h £in e £ 

ps*(Sil,...,sin)^(psSh,...,psSin) 
= (sPh,..., Sp1n), siv ...,sine£ (3.4) 

and the following groups are defined 

£U) = \Pe SN; £ e £ W - • PL * £ e £^\ 

g^ = \P€ SN-J e $V)*=*ps *f e $u)} j>\ (3.5) 

Now if 5 e S^l is an /!,-tuple of sites which may be the result 
of mapping a / e £U>, then it is anticipated that any point-
group equivalent /!/-tuple of sites, say Ss * s for S e #, will 
be an allowed result also; consequently 

cP s #W ;' > 1 (3.6) 

Now if X(°) denotes the group of permutations which permutes 
like ligands, then X(0> is a simple product of smaller symmetric 
groups; however, it is not necessarily a subgroup of the £U\ 
j > 1. Nevertheless, the various £U\ j > 1, generally ac
knowledge physically detectable relations possibly not ac
counted for by X (0) (as is seen, for instance, in the examples 
of section 4 with bidentate chelates); consequently the physi
cally relevant ligand symmetry group is 

X ^ C I n X C ' n Z f f l n . . . (3.7) 

and hence 

£ E JCU) j > 1 (3.8) 

Thus 

g <= # " = £0) n ^ 2 ) n ... (3.9) 

results from assumptions of the "physical reasonability" of the 
constraints. 

From definition 3.5 it is seen that the elements of the groups 
JCW and #W leave the sets X ^ and &V> invariant. Then using 
the constraint conditions of (3.2) also, it follows that 

<PSPL • XO) - S s * ( ^ * (L* * XO))) 
= Ss * (fp * £ <•») 5 s * <£<-» = ^tO 

all S e S n , L e £" (3.10) 

for all allowed <pP. Hence if <pP is allowed, then so are all <PQ 
with Q in the same <£n,Xn DC. Therefore there are allowed 
and forbidden £n,£n DCs, in which all permutations yield 
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all allowed or all forbidden permutamers, respectively. Further, 
because of the subgroup condition of (3.9), each f n , X n DC 
breaks up into a union of &,JL DCs, which also are completely 
allowed or completely forbidden. 

In the present general classification scheme with constraints 
it is seen that each allowed permutational isomer is in unique 
correspondence with an allowed §,£ DC, all of the permuta
tions of which yield allowed permutamers. The interpretation 
and properties of these allowed <£,X DCs are similar to those 
in the unconstrained case. For instance,6 the group S n 
GZJCGZ~1, the order of which gives the repetition frequency 
dq for the DC §GZJL, is seen to be the (proper rotational) 
molecular point group of the gth permutational isomer, in 
contrast to JL the (proper rotational) molecular point group 
for the (idealized) skeleton; hence6 the repetition frequency 
dq of #GZX provides a "symmetry number" for the <?th per
mutational isomer. Every allowed £,JZ DC is obtained from 
a usually larger allowed ^ n , £ " DC, so that to generate or 
enumerate the allowed 8,JZ DCs all that is necessary to do is 
determine the allowed &n,£ n DCs and break them up. In the 
Appendix some general theory is presented for breaking up 
larger DCs into smaller ones. The determination of the larger 
allowed &n,JZn DCs might be pursued by computer via the 
method such as that of Brown et al.1' with the checking for 
allowedness or forbiddenness being simply a check of the 
conditions of (3.2). Here we consider determining these larger 
DCs only in the explicit cases of the next section. 

4. Bidentate Chelates 
Here the classification problem is considered for the case 

where both unidentate and bidentate ligands are present in the 
coordination sphere. It is assumed that the bidentate chelates 
must be coordinated to near-neighbor sites on the molecular 
skeleton, but that the near-neighbor sites are arranged such 
that no crossing constraints, as mentioned as a possibility in 
(c) of section 1, are required. Then there is just a single pair 
of constraint sets, X ( " and cP(1\ with <£(1) consisting of pairs 
of near-neighbor sites and X (1) consisting of pairs of ligands 
common to a single bidentate chelate. If for n bidentate che
lates ligand indexes £u-\ and -̂ 2,- are chosen to form a pair for 
a bidentate chelate, / = 1 to n, then 

X<»> = \(£2i-i,£2i). (£2i,£ii-&J= 1 ton} 

JCW = Sn* f[ S |2,-i.a| S|2»+i jv, (4.1) 
1=1 

Here Syj,.. .\ denotes the symmetric group of permutations 
on i, j , ••-, and Sn* (isomorphic to Sn) is generated by the 
bitranspositions (2/ - 1, Ii + 1)(2/, 2/ + 2) for i = 1 to n - 1. 
Verbally X° = -£(1), o r X n i = X(1)L, may be described as the 
group permuting the unidentate ligands among themselves, 
interchanging ends of a bidentate chelate, and permuting whole 
bidentate chelates among themselves. Clearly J C = X ( 0 ) n I ( 1 ) 

is generally not a product of disjoint symmetric groups, in 
contrast to the case with no constraints. Since point group 
operations preserve distances, neighbor pairs of sites must 
remain so when both are transformed by a permutation cor
responding to a point group operation, and consequently <£ s 
£n. Thus the general conditions and assumptions of section 
3 are readily verified for the present special type of case. 

Now if points are identified with the elements of £ and lines 
between these points with the appropriate elements of c?(1), 
then a site-adjacency graph is obtained, and &n = <£(1) is 
simply the automorphism group of this graph. Often this graph 
may be viewed as an outline of a polytope with <?n its maxi
mum possible point group symmetry (including improper 
rotations). Similarly, JZn is the maximum possible ligand 
symmetry group JZ. Hence the allowed £ n ,£ n DCs may often 
be viewed as the least discriminatory classification which would 

G2=I G1= (13) G2= (13X24) 

Gr= 1 G : = ( I 3 5 ) Gz = (13) 

Figure 1. The trigonal-bipyramidal case with the various <?",.£ n DCs that 
may arise. The G2 given are the associated choices for the DC genera
tors. 

sometimes be complete for permutational isomers with a given 
number, n, of bidentate chelates. We now proceed with a 
number of examples with particular choices for JZn and Sn 

and give the various allowed (and sometimes forbidden) 
$n,JZn DCs. In these examples the site-adjacency graph is 
illustrated. The position of the bidentate chelate(s) are also 
illustrated for a particular bijection associated with the various 
^ n , X n DCs, thus identifying these DCs. 

For a trigonal-bipyramidal graph with sites as in Figure la, 
we have 

$n = S|1,2|S|3,4,5} (4-2) 

When n = 1 

X n = S11,2)5(3,4,5} (4-3) 

and there are three £n,JZn DCs, with generators and corre
sponding bijections given in Figure lb; here a broad boldface 
line represents a chelate position, and the first DC is forbidden 
while the last two are allowed. When n = 2 

X" = S2*Sji,2|Sj3,4| 

S2*-{1,(13)(24)| (4.4) 

and there are three ^ n , X n DCs, with generators and corre
sponding bijections given in Figure Ic; here the first DC is 
forbidden and the last two are allowed. Because of the rather 
simple symmetric group structure of <£n, and of X n , special 
DC symbol techniques6 are applicable. The two bidentate li
gand case is now specialized, assuming that the two identical 
chelates possess distinguishable ends, as in Figure 2a. Then 

XW = il,(13),(24),(13)(24)| 

X = X < ° > n X n ={1,(13)(24)) (4.5) 

and as an illustrative example we determine how the third 
Sn,JZn DC of Figure Ic breaks up. Thus utilizing the methods 
of Appendix A, we first decompose 

£n = 0 {GZ-^SGZ n £n)Gj£ 
j 

S2*Si,,2|S|3.4| = U )l,(14)(23))G;(l,(13)(24)j 
j 

= jl,(14)(23))Xujl,(14)(23)! 
(12)X u {1,(14)(23)}(34)X (4.6) 
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G2Gj = (13) G2Gj=(123) GzGj=(134) 

Figure 2. A typical bidentate chelate with distinguishable ends, and the 
three g",£ DCs of eq 3.7. 

G2=I G2= (13) 

G2=I G2= (13) G2=(16) G2=(135)(264) 

G2=(13) G2=(135)(264) 

Figure 3. The octahedral case with the various Sn,Xn DCs which may 
arise. The G2 given are the associated DC generators. 

so that 

#^(13)Xn = Sn(U)£ 0 <£n(13)(12)X 0 #n(13)(34)X 
(4.7) 

If mirror image chiral structures are presumed to be indistin
guishable, then S = Sn, and (4.7) is the desired DC decom
position. The structures corresponding to these three &n,£n 

DCs are shown in Figure 2b; in this simple case they are also 
readily generated by "inspection". If mirror image chiral 
structures are considered to be distinguishable, then for the 
trigonal-bipyramidal geometry S consists of just the even 
permutations in <£n. In this case there are six 8,£ DCs in 
#n(13)Xn and two in each of the §n,£ DCs of eq 4.7 or of 
Figure 2b; these six S,£ DCs are represented by the three 
drawings of Figure 2b and their mirror images. 

For an octahedral graph with sites as in Figure 3a 

# " = Oh = S3*(#|i,2|Si3,4|^5,6|) 

S3*=iU13)(24),(35)(46),(15)(26), 
(135)(246),(153)(264)| (4.8) 

For n = 1, 2, and 3 the groups £n = X (1 ) are chosen in ac
cordance with (4.1) and the resulting &n,£n DCs are illus
trated in Figures 3b, c, and d. For n = 1 there are two DCs, 
the first of which is forbidden and the second of which is al
lowed. For n = 2 there are four DCs, the first and third of 
which are forbidden and the second and fourth of which are 
allowed. For n = 3 there are three DCs, only the third of which 
is allowed. Considering this last n = 3 DC of Figure 3d further, 

& 2D D C 2D 

Figure 4. The n = 6 icosahedral case, viewing the icosahedron face-on. 
Their point group designations Th, X>i, Dv. Gi. and 2)3, respectively. 

we find 

§n u GZ£"GZ~X = {l,(135)(246),(153)(264)}{l,(23)(56)i 
= GiG2'= Si (4.9) 

so that this DC has repetition frequency dz = |2)3 | = 6 , 
and 

\SnGz£
n I = ' 'J ' = 384 (4.10) 

az 

Thus there are 384 associated bijections. To determine the 
maximum number of n = 3 permutational isomers which may 
arise with S = O, £ = jl} is chosen. Note that all the §£ DCs 
are simply ordinary right cosets of 0 in ^6 all with the same 
order \0\ =24; the maximum number of n = 3 permutational 
isomers is, therefore, \$nGz£

n\/\&\ = 16. 
For an icosahedral graph # n = ^ ( 1 ) is isomorphic to the 

icosahedral group 3^, with inversion included. The n = 6 case 
actually arises for a copper(I) dithiosquarate complex12 and 
for crystalline rare-earth double nitrates13 and five allowed 
# n , X n DCs are found, containing a total of 125 allowed bi
jections. These allowed DCs are illustrated in Figure 4 along 
with the point group designations for their symmetry groups 
§n n Gz£

nGz~K 
In the icosahedra discussed above the skeletal symmetries 

are actually slightly less than icosahedral; for instance, in the 
copper complex a cube of copper(I) ions is centered inside the 
icosahedron, thereby giving rise to a cubic crystal field.12 It is 
therefore necessary to consider the Th.£ n DCs which are 
obtained from the breakup of the allowed Jh.£ n DCs. The 
number ofTh,£ n DCs arising from a DC 3hGz£

 n is, by eq 
A . 10 of Append ix A, 

t =JljLy[£iLSllhi\ff nG£«G-<\ 
^ \Th\dzi \e,\ \*>n("-L <" I 

(4.11) 

where ft = 3h,fi = Th, and 3i = ft = £n have also been 
identified. Next, introducing the definition 

QZ = GZ£"GZ~' n3h (4.12) 

for the DC symmetry group, it follows that 

kz dz\ \e„\ 1&P M 

= j - { \ ( ? x n § z \ + | ( ? T n S z | + j | < ? 2 n g z | 

+ \\ein9z\+j\einSz\ 

+ | | < ? 3 ^ z | ) (4.13) 

The following notation was utilized in (4.13): j = 1 for the 
identity class of 3h. j - 1 for the inversion class, j = 2 for the 
class of twofold rotations, 7 = 2 for the class ofreflections, j 
= 3 for the class of threefold rotations, andj = 3 for the class 
of sixfold improper rotations. From this formula one then 
readily finds that £z = 2 except for the case with Sz = G2 in 
which case | z = 3. Of course, if the cube of copper(I) ions ro-
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tates around sufficiently rapidly (compared to the time scale 
of a relevant experiment), these different isomers for this lower 
symmetry would not be identifiable. 

In the case of an icosahedral skeleton with identical biden
tate chelates but distinguishable ends, £ = S6*, and it is of 
interest to break up 3h, £ n DCs into 3h, ^ e * DCs. The 
number of 3h< $6* DCs arising from a DC 3/,Gz£

 n is given 
by eq A.9 of Appendix A as 

^ dz\s6*\\ K?„| | S z n 6 M (4-14) 

where ft = ft = 3h= 3i = X n , & = ^ 6*, and §T = 
Gz~

]3hGz n £n. Using the class specification of Appendix 
B for the classes of £ n, it follows that 

= -J E 2*'+*J+*3+*«+*5+*6|gf o e-b\ (4.15) 
dz i 

where the b = (b[,b2,b3,b4,b$,b6) with Sf= i /6,- = 6 identify the 
classes for which | S^ n <?„| ?* 0. From this formula one then 
finds that | z = 8,22,13, 36, and 16 for the five 3h, £ n DCs 
of Figure 4. 

5. Permutational Isomerization and Rearrangement Modes 

Here a partial characterization of permutational isomer
ization reactions is effected by classifying the sites between 
which the ligands are moved (note, however, that in general 
the particular ligands involved are important also). Formally, 
the rearrangement bijections from <£ onto S are studied. Be
cause of skeletal symmetry different rearrangements are de
scribed4-6 as equivalent with the associated equivalence classes 
of rearrangements being termed modes. A mode Mn is given5 

in terms of #,# DCs 

Mm = $Gm$ v $<jGm<j-xS (5.1) 

where S is the proper rotational portion of the full skeletal point 
group, a is any improper rotation in the full skeletal point 
group, and Gm is any (representative) element in Mn. Also of 
interest are kinetic modes6-14 

MnW = Mn, v Mm (5.2) 

where Mn is the mode generated by Gn = Gm~x. 
We now introduce the notation that if A is a set, then 2{A\ 

denotes the (uniform) sum over all elements of A. The /th 
isomer may, therefore, be identified by S)1^ V G 1 X L | or 
Sj<PG,Xj and more generally a linear combination 

E ^ZIJG/Z} c , > 0 (5.3) 
i 

denotes a mixture of isomers, the /th with (relative) concen
tration ct. Similarly, ^[Mn] identifies a particular type of 
isomerization process. Then if the /th isomer is subjected to the 
wth mode of rearrangements, the relative concentrations of 
the resulting products are (when there are no constraints) given 
by 

-L\Mm\V\gG,J:\ = E {i\mt)2,\SGr£\ (5.4) 

with the positive integers (/' | m,-) related simply to those of a 
DC algebra.6 Now for the present constrained problems, even 
if / is an allowed isomer, both allowed and forbidden i' gener
ally result (with nonzero (/'|m,}) in this equation (5.4). A way 
to incorporate constraints into such descriptions would be to 
define "renormalized" coefficients the same as the (/'Im,) 
except in the case when /' is forbidden and the renormalized 
coefficient is taken as zero. This continued viability of the mode 
concept suggests the use of constrained cases in extracting 

mode rate constants (the kP of ref 6) from experimental data. 
That the mode concept becomes modified only on applying the 
rearrangement modes to an isomer is clearly expected since 
the modes are concerned only with the idealized molecular 
skeleton and are independent of the ligands. 

In some special cases the modes can be classified into al
lowed and forbidden classes. For instance, consider the cases 
a or b of section 1, with the ligands of X(1> = \£u£i,. • • £m\ 
constrained to lie on the sites of <£(1) = \s\,S2, • • •, sn\. Then 

^n = #(1) = 5 1 1 2 n]S{n+hn+2 .V! 

£n = X ( 1 ) = 5(1,2 m\ S|m+l.m+2 N\ (5.5) 

When one site J1- is an allowed site for the occupancy of the li
gands in X<'> (i.e., s, e # (1 )), it follows that the other point 
group equivalent sites are also allowed; hence #(1) is invariant 
under # and £ s ^ n . The £n,£n DCs may be identified by 
DC symbols,6 and it is readily recognized that only the identity 
^" \X n DC is allowed, thus allowing permutational isomers 
to be identified immediately. Clearly, all the modes occurring 
in 

gnGm£n u ^ " f f G ^ - T = «Pn Gn= \ (5.6) 

are entirely allowed since when applying S{«Pn( to any of the 
allowed £,S DC sums, as S(^G1-Z) with £Gt£ s £"£ n, 
only allowed Z,# DC sums are obtained. However, for Gn $ 
# n the sets of (5.6) generally give rise to modes which when 
applied to an allowed isomer give back both allowed and for
bidden isomers. If in addition to (5.5) one chooses7-8 m = n, 
so that £n = £ n, then all the sets of (5.6) with Gn <$ Sn will 
be entirely forbidden. Rather similar results still apply if there 
are several different constraints of the types a or b given in 
section 1. 

6. An Alternative Approach 

In the preceding sections the approach to the constrained 
problem has relied on individually and exhaustively examining 
<£n,Xn DCs to determine whether each one is allowed or 
forbidden. Another approach to the constrained problem has 
been described9-10 such that, for a few special cases, exactly 
all the allowed permutational isomers are generated. In a 
general formulation of this alternate approach one considers 
certain bijections from the set \<pp;P e <$V| of permutamers 
back onto itself. These certain bijections are those of the group 
Sxs ® SN

 L, with a group action defined by 

= VPRQ-^(PS,QL) e SN^ ® SN
L (6.1) 

Then one seeks a generating subgroup 

ficS/8 SN
L (6.2) 

such that if <pR is allowed, then the set 

© o ** = \(PS,QL) o v>R; (PS,QL) € Q] (6.3) 

comprises exactly all allowed permutamers. 
It is desirable for <2 to generate all the allowed permutamers 

since in general they are all needed to identify all the allowed 
permutational isomers. (When £ = <£ = |1 j each permutamer 
uniquely identifies a permutational isomer.) Hence the num
ber, My of allowed permutamers should be a divisor of the order 
IQI of the generating group Q, if it exists. Since | Q| in turn 
should be a divisor of \SN

S ® SN
L\ = (N!)2, M should also 

be a divisor of (iV!)2. This condition is not met for the cases of 
Figures lb, Ic, 3c, and 4; therefore there exists no such gen
erating group <2 for these cases. It seems likely that the 
nonexistence of such generating groups might be a fairly 
general occurrence. Indeed, although there is15 a rather simple 
way to characterize all subgroups of SN

S ® SN
 L in terms of 
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the subgroup structure of Sy, the only cases for which a gen
erating group (2 has been identified are instances with 

= # n S ® jCnL (6.4) 

Since this choice for Q generates only a single Sn,J2n DC, the 
approach of this section seems restricted in application to those 
(few) cases where there is a single allowed £n,jLn DC. Of 
course, even if there are several allowed <£n,X n DCs the group 
of (6.4) could still be utilized to generate those isomers in each 
of these <?n,Xn DCs from any single member of the same 
^ n , X n D C . 

Some special cases to which the present approach does apply 
include those with site-adjacency graph and number n of bi
dentate chelates given as: (a) a regular polygon or polyhedron 
with n = 1, (b) a cubo-octahedron or dodeco-icosahedron with 
n = 1, (c) a 2A/-sided polygon with n = M, (d) a (2M - I)-
sided polygon with n = M, (e) a (2M - l)-agonal pyramid 
with n = M, (f) an octahedron with n = 3, (g) a pentalene 
graph with n = 4. Other examples (with just a single allowed 
# n , X n DC) can be found. When the desired 0 exists, it might 
generate (from an allowed <PR) each allowed permutamer a 
repeated number of times, whence sometimes one can identify 
a subgroup 0' s 0 generating each allowed permutamer just 
once. A case where this idea may be illustrated involves n = 
3 bidentate chelates and an octahedral site-adjacency 
graph, 

= Vh 

X n = S3*(S|i,2|S|3i4) Sj5,6|) (6.5) 

If the skeletal group & is the octahedral group 0 of proper 
rotations and the three bidentate chelates are identical, then 

Q' = e>is®(sn,2lsl3A]s{5My (6.6) 

which is the case described by Eaton and Eaton.9 If £ is still 
0 but the three bidentate chelates are different, then 

= ( ? i J 8 X n t (6.7) 

which is the case discussed by Mislow and co-workers.10 The 
identification of Q' in both cases is in the form 

Q' = g'S ® X ' L (6.8) 

with i n being a semidirect product of i and S', and with X n 

a semidirect product of X and JL'. In general, even if Q exists, 
such a 0' does not necessarily exist, as in the case of the tri
gonal antiprism with n = 3 (and S = S3). 

7. Conclusions 
Earlier group-theoretic classification and characterization 

of permutational isomers and rearrangement modes has been 
extended here to take into account a variety of constraints on 
the positioning of ligands on the molecular skeleton. The 
general theory and group theoretical tools have been described. 
For the case of bidentate ligation constraints examples in
volving the trigonal bipyramid, the octahedron, and the icos-
ahedron have been given. For the cases of steric hindrance or 
ligand electronegativity constraints (which confine certain 
ligands to certain sites), the special simplicity of the present 
techniques has been described. It is believed that the present 
approach is widely applicable and provides a unifying group-
theoretic view of a significant variety of chemically different 
situations. 
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Appendix A. DCs in DCs 
Here the general problem of decomposing larger Ji,Ji DCs 

into smaller Ji,Ji DCs with Ji 2 Ji and Ji 2 J? is considered. 

Letting a group S be decomposed 

£ = U 1HG1Ji (A.l) 

it is well known that each Ji, Ji DC is a disjoint union of Ji, Ji 
DCs, and 

JiG2Ji = U JiG1G2Ji (A.2) 

where the G, are DC generators for the DC expansion 

Ji = UJiG1(Ji n G2JiGr1) (A.3) 

Next the Ji,Ji DCs can be decomposed similarly into 

JiG1G2Ji = U JiGiG2GjJi (AA) 
j 

where the Gj are DC generators for the DC expansion 

Ji = (j[(G,G2)-
]Ji(GiG2) n Ji]GjJi (A.5) 

J 

Hence the overall decomposition of Ji, Ji DCs into ji,j7 DCs 
is obtained in a two-step process involving ordinary DC de
compositions. The Ji,Ji DC generators are of the form 
G1G2Gj. In the special (but frequent) case in which Ji is nor
mal in Ji, the DCs on the right in (A.3) are simple left cosets, 
and the intersection group of (A.5) is independent of the G1. 
Further simplifications can arise when Ji is normal in Ji, or 
Ji is normal in Ji. Also it should be noted that one can similarly 
decompose Ji,Ji DCs first to Ji, Ji DCs, then these to ji,Ji 
DCs. 

To enumerate the ji,j\ DCs in an Ji,Ji DC, one could 
simply enumerate the DCs in the expansions (A.3) and (A.5) 
via, for instance, the DC enumeration formula of Ruch et al.,3 

which is most convenient if the class structure of the overall 
group, Ji or Ji in (A.3) and (A.5), is simply recognizable. Here 
an alternative formula is developed which, however, follows 
a similar method of proof. Letting £z be the number sought 

k~9?zW#G,*|#G?#| 
1 

GeItG2Ji \jiGJi\ 

(A.6) 

where | A | indicates the order of the set A and the q 6 z sum 
is a sum over the different Ji,Ji DCs in JiG2Ji. Next using 
the relation between the order of a DC JiGJi and its repetition 
frequency da = \Ji n GJiG~] |, one obtains 

Iz = 
GeXG2X \Ji\\J(\ 

1 
- |# l l*?T £ l ^ n G ^ " ' l (A-7) 

I Ji \\ Ji\ GsMG2Ji 

Then letting d2 be the repetition frequency for JtG1Ji 

1 Iz = 
\$\d,\fi\ HTMKTX 

1 

Z T. \& r> HG2KJiK-^Gr1H-

\H\d2\Ji\HeJiKtji 

\Ji\\Ji\ 

L L \HjiH~1 n G2(KJiK-^)G2 

h k 

OTwOT??l*-nC'*»c'-,l (A'8) 

where a labels the h different subgroups Jia, a= \ioh, con
jugate to Ji; similarly b labels the k subgroups Jib conjugate 
to Ji. This last result of (A.8) is of some use, but may be further 
modified if a is allowed to label the various classes GB of Ji, so 
that 

file:///HjiH~1
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n KJiK'1 n G„\ = 

S 1 • " i 1 E I G r - 1 ^ G r O g„| (A.9) 
CT | ^ CT | d 

where it has been noted that if K e (B „ c\j\, then as K ranges 
over the elements of Ji in the expression KKK~X each element 
of (Pc is generated exactly 1*1/1^1 times. Similarly, if p is 
allowed to label the classes Gp of Ji, then 

_ | * | | * | T\(?Pn!r?\±, f fc-1^1^1*1 ? ^ r ? 1^ nG^bGz ' 
(A.10) 

If * = § and .7? = Ji, then (A.9) yields the previously known3 

formula for the number of Ji,Ji DCs in S. 

Appendix B. Concerning Classes of Certain Groups 

In order to use the enumeration formula (A.9), the class 
structure and the orders of the classes of Ji should be readily 
recognizable. To this end we consider the classes for some 
special types of groups of interest in the applications here. 

First, with a symmetric group Sn, the characterization of 
its classes in terms of cycle structure is well known. Thus if P 
e Sn involves cj cycles of length), then the sequence c\, c2, • • •, 
Cn identifies the class containing P and the order of this class 
is 

n\ 
W=I 

Second, consider a group 

UMcM 

M = Sn* u S|2/_i.2„ 
i = i 

(B.l) 

(B.2) 

termed the semidirect (or wreath, or kranz, or composition) 
product of JIf=I Sj2/-i,2i) by Sn*, as given in (4.1). The par
ticular semidirect product of (B.2) is, in fact, known16 as the 
hyperoctahedral group, whose class structure and class orders 
follow as a special case of a theorem in Kerber.17 In this case 
the class to which P e JV belongs is identified uniquely by a 
"partially labeled" cycle structure. The development of this 
identification is aided if it is noted that the elements of JV 
permute the sets 

\ = \2i- 1,2/} / = 1 ton (B.3) 

among themselves. Hence HPeN permutes sets ii to i2, i2 to 
i3, . . . , and î  to i\, then one of two possible types of index-cycles 
might occur in P giving rise to this cyclic permutation of sets; 
they are 

and 

(J\,J2 hJ\'Ji Jk) 

(J\Ji Jk)(JiJi Jk) 

(B.4) 

(B.5) 

where je andy/ are the two different indices of the set i(, £ = 
1 to &. Now any index pair_/V and 7 / can be interchanged in 

these cycles through conjugation by (Je, j/) e JV. Further, the 
k different sets involved and their order can be changed around 
through conjugation by elements of Sn*. Hence each class of 
JV is identified by specifying the set-cycle structure with set-
cycles being distinguished as to whether they give rise to 
index-cycles as in (B.4) or in (B.5). If P e JV involves aj and 
bj set-cycles of length j with corresponding index-cycles as in 
(B.4) and (B.5), respectively, then a derivation much like that 
leading to (B.l) applies; the resulting order for the class con
taining P is 

n' " , n'2" 
TI (2k~^(2k-^ = — 

TJ a,\j«J bj\jbJ "~' ft ajlbj\(2j)W>j) 
j= 1 ;'= 1 

(B.6) 

Thus, for instance, for n = 5 both of the permutations 

(1,3)(2,4)(5,7,6,8)(9,10) and (1,10)(2,9)(3,5,4,6)(7,8) 
(B.7) 

have 

#i = #2 = t>2 = 1 

b\ = ^3 = ^3 = a4 = t>4 = as = b$ = 0 (B.8) 

so that the order of their class is 5! = 120. 
Third, in the case of a direct product of two subgroups, each 

class of this direct product is a direct product of classes of the 
two subgroups. Consequently, the class orders are products of 
orders of classes of the subgroups. Noting that JL n of (4.1) is 
a direct product of subgroups of the first and second types 
discussed here, it is easy to recognize the class structure and 
orders for this case. 
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